The WEKA data mining software: an update M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten ACM SIGKDD explorations newsletter 11 (1), 10-18, 2009 | 24573 | 2009 |
Classifier chains for multi-label classification J Read, B Pfahringer, G Holmes, E Frank Machine learning 85, 333-359, 2011 | 2077 | 2011 |
Moa: Massive online analysis, a framework for stream classification and clustering A Bifet, G Holmes, B Pfahringer, P Kranen, H Kremer, T Jansen, T Seidl Proceedings of the first workshop on applications of pattern analysis, 44-50, 2010 | 2065 | 2010 |
Benchmarking attribute selection techniques for discrete class data mining MA Hall, G Holmes IEEE Transactions on Knowledge and Data engineering 15 (6), 1437-1447, 2003 | 1580 | 2003 |
Weka: A machine learning workbench G Holmes, A Donkin, IH Witten Proceedings of ANZIIS'94-Australian New Zealnd Intelligent Information …, 1994 | 1451 | 1994 |
Data mining in bioinformatics using Weka E Frank, M Hall, L Trigg, G Holmes, IH Witten Bioinformatics 20 (15), 2479-2481, 2004 | 1137 | 2004 |
Classifier chains for multi-label classification J Read, B Pfahringer, G Holmes, E Frank Machine Learning and Knowledge Discovery in Databases: European Conference …, 2009 | 954 | 2009 |
New ensemble methods for evolving data streams A Bifet, G Holmes, B Pfahringer, R Kirkby, R Gavalda Proceedings of the 15th ACM SIGKDD international conference on Knowledge …, 2009 | 777 | 2009 |
Weka-a machine learning workbench for data mining E Frank, M Hall, G Holmes, R Kirkby, B Pfahringer, IH Witten, L Trigg Data mining and knowledge discovery handbook, 1269-1277, 2010 | 731 | 2010 |
Multinomial naive bayes for text categorization revisited AM Kibriya, E Frank, B Pfahringer, G Holmes AI 2004: Advances in Artificial Intelligence: 17th Australian Joint …, 2005 | 572 | 2005 |
Adaptive random forests for evolving data stream classification HM Gomes, A Bifet, J Read, JP Barddal, F Enembreck, B Pfharinger, ... Machine Learning 106, 1469-1495, 2017 | 541 | 2017 |
Multi-label classification using ensembles of pruned sets J Read, B Pfahringer, G Holmes 2008 eighth IEEE international conference on data mining, 995-1000, 2008 | 530 | 2008 |
Using model trees for classification E Frank, Y Wang, S Inglis, G Holmes, IH Witten Machine learning 32, 63-76, 1998 | 514 | 1998 |
WEKA---Experiences with a Java Open-Source Project RR Bouckaert, E Frank, MA Hall, G Holmes, B Pfahringer, P Reutemann, ... The Journal of Machine Learning Research 11, 2533-2541, 2010 | 440 | 2010 |
Active learning with drifting streaming data I Žliobaitė, A Bifet, B Pfahringer, G Holmes IEEE transactions on neural networks and learning systems 25 (1), 27-39, 2013 | 396 | 2013 |
Leveraging bagging for evolving data streams A Bifet, G Holmes, B Pfahringer Machine Learning and Knowledge Discovery in Databases: European Conference …, 2010 | 386 | 2010 |
Generating rule sets from model trees G Holmes, M Hall, E Prank Advanced Topics in Artificial Intelligence: 12th Australian Joint Conference …, 1999 | 376 | 1999 |
Meka: a multi-label/multi-target extension to weka J Read, P Reutemann, B Pfahringer, G Holmes | 296 | 2016 |
Interactive machine learning: letting users build classifiers M Ware, E Frank, G Holmes, M Hall, IH Witten International Journal of Human-Computer Studies 55 (3), 281-292, 2001 | 265 | 2001 |
Naive Bayes for regression E Frank, L Trigg, G Holmes, IH Witten Machine Learning 41, 5-25, 2000 | 259 | 2000 |