Binghui Li
Binghui Li
Verificeret mail på inl.gov - Startside
Citeret af
Citeret af
Modelling to generate alternatives with an energy system optimization model
JF DeCarolis, S Babaee, B Li, S Kanungo
Environmental Modelling & Software 79, 300-310, 2016
A review on the integration of probabilistic solar forecasting in power systems
B Li, J Zhang
Solar Energy 210, 68-86, 2020
A techno-economic assessment of offshore wind coupled to offshore compressed air energy storage
B Li, JF DeCarolis
Applied Energy 155, 315-322, 2015
A hybrid approach for transmission grid resilience assessment using reliability metrics and power system local network topology
B Li, D Ofori-Boateng, YR Gel, J Zhang
Sustainable and Resilient Infrastructure 6 (1-2), 26-41, 2021
A clustering-based scenario generation framework for power market simulation with wind integration
B Li, K Sedzro, X Fang, BM Hodge, J Zhang
Journal of Renewable and Sustainable Energy 12 (3), 036301, 2020
The economics of electricity generation from Gulf Stream currents
B Li, AR de Queiroz, JF DeCarolis, J Bane, R He, AG Keeler, VS Neary
Energy 134, 649-658, 2017
Sizing ramping reserve using probabilistic solar forecasts: A data-driven method
B Li, C Feng, C Siebenschuh, R Zhang, E Spyrou, V Krishnan, BF Hobbs, ...
Applied Energy 313, 118812, 2022
Open Source Energy System Modeling Using Break-Even Costs to Inform State-Level Policy: A North Carolina Case Study
B Li, J Thomas, AR de Queiroz, JF DeCarolis
Environmental science & technology 54 (2), 665-676, 2019
Revenue prediction for integrated renewable energy and energy storage system using machine learning techniques
Y Lin, B Li, TM Moiser, LM Griffel, MR Mahalik, J Kwon, SMS Alam
Journal of Energy Storage 50, 104123, 2022
A copula enhanced convolution for uncertainty aggregation
B Li, J Zhang, BF Hobbs
2020 IEEE Power & Energy Society Innovative Smart Grid Technologies …, 2020
Assessing the resilience of the Texas power grid network
D Ofori-Boateng, AK Dey, YR Gel, B Li, J Zhang, HV Poor
2019 IEEE data science workshop (dsw), 280-284, 2019
Coordinated ramping product and regulation reserve procurements in caiso and miso using multi-scale probabilistic solar power forecasts (pro2r)
BF Hobbs, Y Wang, Q Xu, S Zhang, HF Hamann, R Zhang, ...
Johns Hopkins Univ., Baltimore, MD (United States), 2022
A clustering based scenario generation method for stochastic power system analysis
B Li, J Zhang
2019 IEEE Power & Energy Society General Meeting (PESGM), 1-5, 2019
The Economic Performance of the Ocean Compressed Air Energy Storage.
B Li
Hydropower flexibility valuation tool for flow requirement evaluation
M Roni, T Mosier, B Li, SMS Alam, V Durvasulu, B Lawson, D Steindorf, ...
Energy Reports 9, 217-228, 2023
How Can Probabilistic Solar Power Forecasts Be Used to Lower Costs and Improve Reliability in Power Spot Markets? A Review and Application to Flexiramp Requirements
BF Hobbs, V Krishnan, J Zhang, HF Hamann, C Siebenschuh, R Zhang, ...
IEEE Open Access Journal of Power and Energy, 2022
Using probabilistic solar power forecasts to inform flexible ramp product procurement for the California ISO
BF Hobbs, J Zhang, HF Hamann, C Siebenschuh, R Zhang, B Li, I Krad, ...
Solar Energy Advances 2, 100024, 2022
Release a public version of HERON (HERON 2.0) with improved algorithms for the treatment of energy storage
B Li, PW Talbot, DJ McDowell, JK Hansen
Idaho National Lab.(INL), Idaho Falls, ID (United States), 2021
Pro2R: Procurement of Ramping Product and Regulation in CAISO Using Probabilistic Solar Power Forecasts
BF Hobbs, V Krishnan, P Edwards, H Sky, I Krad, C Siebenschuh, ...
National Renewable Energy Lab.(NREL), Golden, CO (United States), 2021
Providing Ramping Service with Wind to Enhance Power System Operational Flexibility
X Fang, KSA Sedzro, BS Hodge, J Zhang, B Li, M Cui
National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20