Follow
Ian Char
Title
Cited by
Cited by
Year
Beyond pinball loss: Quantile methods for calibrated uncertainty quantification
Y Chung, W Neiswanger, I Char, J Schneider
Advances in Neural Information Processing Systems 34, 10971-10984, 2021
622021
Uncertainty toolbox: an open-source library for assessing, visualizing, and improving uncertainty quantification
Y Chung, I Char, H Guo, J Schneider, W Neiswanger
arXiv preprint arXiv:2109.10254, 2021
602021
Offline Contextual Bayesian Optimization
I Char, Y Chung, W Neiswanger, K Kandasamy, AO Nelson, M Boyer, ...
Advances in Neural Information Processing Systems, 4629-4640, 2019
312019
Toward a non-intrusive, physio-behavioral biometric for smartphones
E Vasiete, Y Chen, I Char, T Yeh, V Patel, L Davis, R Chellappa
Proceedings of the 16th international conference on Human-computer …, 2014
202014
Neural dynamical systems: Balancing structure and flexibility in physical prediction
V Mehta, I Char, W Neiswanger, Y Chung, A Nelson, M Boyer, E Kolemen, ...
2021 60th IEEE Conference on Decision and Control (CDC), 3735-3742, 2021
172021
DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
ME Fenstermacher, J Abbate, S Abe, T Abrams, M Adams, B Adamson, ...
Nuclear Fusion 62 (4), 042024, 2022
152022
Offline contextual bayesian optimization for nuclear fusion
Y Chung, I Char, W Neiswanger, K Kandasamy, AO Nelson, MD Boyer, ...
arXiv preprint arXiv:2001.01793, 2020
102020
How Useful are Gradients for OOD Detection Really?
C Igoe, Y Chung, I Char, J Schneider
arXiv preprint arXiv:2205.10439, 2022
92022
Neural dynamical systems
V Mehta, I Char, W Neiswanger, Y Chung, AO Nelson, MD Boyer, ...
ICLR 2020 Workshop on Integration of Deep Neural Models and Differential …, 2020
62020
Bats: Best action trajectory stitching
I Char, V Mehta, A Villaflor, JM Dolan, J Schneider
arXiv preprint arXiv:2204.12026, 2022
52022
Offline Model-Based Reinforcement Learning for Tokamak Control
I Char, J Abbate, L Bardóczi, M Boyer, Y Chung, R Conlin, K Erickson, ...
Learning for Dynamics and Control Conference, 1357-1372, 2023
42023
Near-optimal Policy Identification in Active Reinforcement Learning
X Li, V Mehta, J Kirschner, I Char, W Neiswanger, J Schneider, A Krause, ...
arXiv preprint arXiv:2212.09510, 2022
32022
Exploration via planning for information about the optimal trajectory
V Mehta, I Char, J Abbate, R Conlin, M Boyer, S Ermon, J Schneider, ...
Advances in Neural Information Processing Systems 35, 28761-28775, 2022
22022
Deep Attentive Variational Inference
I Apostolopoulou, I Char, E Rosenfeld, A Dubrawski
International Conference on Learning Representations, 2021
22021
A model-based reinforcement learning approach for beta control
I Char, Y Chung, M Boyer, E Kolemen, J Schneider
APS Division of Plasma Physics Meeting Abstracts 2021, PP11. 150, 2021
22021
Machine learning for tokamak scenario optimization: combining accelerating physics models and empirical models
M Boyer, J Wai, M Clement, E Kolemen, I Char, Y Chung, W Neiswanger, ...
APS Division of Plasma Physics Meeting Abstracts 2021, PP11. 164, 2021
22021
Sample-efficient plasma control by planning for optimal trajectory information
V Mehta, I Char, J Schneider, W Neiswanger, S Ermon, J Abbate, ...
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the …, 2022
12022
Stochastic Analysis of Minimal Automata Growth for Generalized Strings
IG Char, ME Lladser
Methodology and Computing in Applied Probability, 2019
1*2019
Disruption Prediction via Deep Recurrent Neural Networks
R Saxena, Y Chung, I Char, J Abbate, J Schneider
Bulletin of the American Physical Society, 2023
2023
Automated Experimental Design of Safe Rampdowns via Probabilistic Machine Learning
V Mehta, J Barr, J Abbate, I Char, W Neiswanger, M Boyer, E Kolemen, ...
Bulletin of the American Physical Society, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20