Follow
Eugene Laksana
Eugene Laksana
Children's Hospital, Los Angeles (VPICU)
Verified email at chla.usc.edu
Title
Cited by
Cited by
Year
Affect-lm: A neural language model for customizable affective text generation
S Ghosh, M Chollet, E Laksana, LP Morency, S Scherer
arXiv preprint arXiv:1704.06851, 2017
1882017
Representation learning for speech emotion recognition.
S Ghosh, E Laksana, LP Morency, S Scherer
Interspeech, 3603-3607, 2016
1382016
A multi-label convolutional neural network approach to cross-domain action unit detection
S Ghosh, E Laksana, S Scherer, LP Morency
2015 International Conference on Affective Computing and Intelligent …, 2015
812015
Learning representations of affect from speech
S Ghosh, E Laksana, LP Morency, S Scherer
arXiv preprint arXiv:1511.04747, 2015
352015
Investigating facial behavior indicators of suicidal ideation
E Laksana, T Baltrušaitis, LP Morency, JP Pestian
2017 12th IEEE International Conference on Automatic Face & Gesture …, 2017
262017
Continuous prediction of mortality in the PICU: a recurrent neural network model in a single-center dataset
MD Aczon, DR Ledbetter, E Laksana, LV Ho, RC Wetzel
Pediatric Critical Care Medicine 22 (6), 519, 2021
242021
The impact of extraneous features on the performance of recurrent neural network models in clinical tasks
E Laksana, M Aczon, L Ho, C Carlin, D Ledbetter, R Wetzel
Journal of Biomedical Informatics 102, 103351, 2020
142020
Computational analysis of acoustic descriptors in psychotic patients.
T Wörtwein, T Baltrusaitis, E Laksana, L Pennant, ES Liebson, D Öngür, ...
INTERSPEECH, 3256-3260, 2017
62017
966: Continuous risk of desaturation within the next hour prediction using a recurrent neural network
L Ehrlich, D Ledbetter, M Aczon, E Laksana, R Wetzel
Critical Care Medicine 49 (1), 480, 2021
52021
Affect-lm: A neural language model for customizable affective text generation. arXiv 2017
S Ghosh, M Chollet, E Laksana, LP Morency, S Scherer
arXiv preprint arXiv:1704.06851, 2017
52017
Improving recurrent neural network responsiveness to acute clinical events
DR Ledbetter, E Laksana, M Aczon, R Wetzel
IEEE Access 9, 106140-106151, 2021
22021
The impact of extraneous variables on the performance of recurrent neural network models in clinical tasks
E Laksana, M Aczon, L Ho, C Carlin, D Ledbetter, R Wetzel
arXiv preprint arXiv:1904.01125, 2019
22019
An unsupervised approach to glottal inverse filtering
S Ghosh, E Laksana, LP Morency, S Scherer
2016 24th European Signal Processing Conference (EUSIPCO), 220-224, 2016
22016
1042: Continuous prediction of medical discharge within 24 hours using a recurrent neural network
K Mertan, A Eckberg, D Ledbetter, M Aczon, E Laksana, R Wetzel
Critical Care Medicine 49 (1), 520, 2021
12021
694: continuous risk of infection prediction using recurrent neural networks in a pediatric ICU
I Obeso, D Ledbetter, M Aczon, E Laksana, M Wintner, R Wetzel
Critical Care Medicine 49 (1), 342, 2021
12021
Analgesia and Sedation at Terminal Extubation: A Secondary Analysis From Death One Hour After Terminal Extubation Study Data
S Tripathi, E Laksana, MC McCrory, S Hsu, AX Zhou, K Burkiewicz, ...
Pediatric Critical Care Medicine, 10.1097, 2023
2023
COMPARISON OF HEPARIN DOSAGE IN CRITICALLY ILL CHILDREN
A Eckberg, A Kamerkar, E Laksana, M Aczon, R Wetzel, D Ledbetter
AMERICAN JOURNAL OF HEMATOLOGY 98, E32-E32, 2023
2023
Development of a deep learning model that predicts Bi-level positive airway pressure failure
DD Im, E Laksana, DR Ledbetter, MD Aczon, RG Khemani, RC Wetzel
Scientific Reports 12 (1), 8907, 2022
2022
1043: Continuous Prediction of ICU-Free Days Using a Recurrent Neural Network in a Pediatric ICU
A Eckberg, K Mertan, D Ledbetter, M Aczon, E Laksana, R Wetzel
Critical Care Medicine 49 (1), 521, 2021
2021
Importance-based Multimodal Autoencoder
S Ghosh, E Laksana, LP Morency, S Scherer
The system can't perform the operation now. Try again later.
Articles 1–20