Follow
Ole Winther
Ole Winther
Biology, Univ of Copenhagen, Genomic Medicine, Rigshospitalet and Technical University of Denmark
Verified email at bio.ku.dk - Homepage
Title
Cited by
Cited by
Year
SignalP 5.0 improves signal peptide predictions using deep neural networks
JJ Almagro Armenteros, KD Tsirigos, CK Sønderby, TN Petersen, ...
Nature biotechnology 37 (4), 420-423, 2019
38672019
Autoencoding beyond pixels using a learned similarity metric
ABL Larsen, SK Sønderby, H Larochelle, O Winther
International conference on machine learning, 1558-1566, 2016
26562016
SignalP 6.0 predicts all five types of signal peptides using protein language models
F Teufel, JJ Almagro Armenteros, AR Johansen, MH Gíslason, SI Pihl, ...
Nature biotechnology 40 (7), 1023-1025, 2022
13972022
DeepLoc: prediction of protein subcellular localization using deep learning
JJ Almagro Armenteros, CK Sønderby, SK Sønderby, H Nielsen, ...
Bioinformatics 33 (21), 3387-3395, 2017
10982017
Ladder variational autoencoders
CK Sønderby, T Raiko, L Maaløe, SK Sønderby, O Winther
Advances in neural information processing systems 29, 2016
1098*2016
JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update
JC Bryne, E Valen, MHE Tang, T Marstrand, O Winther, I da Piedade, ...
Nucleic acids research 36 (suppl_1), D102-D106, 2007
8342007
Detecting sequence signals in targeting peptides using deep learning
JJA Armenteros, M Salvatore, O Emanuelsson, O Winther, G Von Heijne, ...
Life science alliance 2 (5), 2019
7872019
DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks
J Hallgren, KD Tsirigos, MD Pedersen, JJ Almagro Armenteros, ...
BioRxiv, 2022.04. 08.487609, 2022
6352022
NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning
MS Klausen, MC Jespersen, H Nielsen, KK Jensen, VI Jurtz, ...
Proteins: Structure, Function, and Bioinformatics 87 (6), 520-527, 2019
5662019
Auxiliary deep generative models
L Maaløe, CK Sønderby, SK Sønderby, O Winther
International conference on machine learning, 1445-1453, 2016
5142016
Sequential neural models with stochastic layers
M Fraccaro, SK Sønderby, U Paquet, O Winther
Advances in neural information processing systems 29, 2016
4672016
The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line
Nature genetics 41 (5), 553-562, 2009
4212009
Improved metagenome binning and assembly using deep variational autoencoders
JN Nissen, J Johansen, RL Allesøe, CK Sønderby, JJA Armenteros, ...
Nature biotechnology 39 (5), 555-560, 2021
3692021
A disentangled recognition and nonlinear dynamics model for unsupervised learning
M Fraccaro, S Kamronn, U Paquet, O Winther
Advances in neural information processing systems 30, 2017
3542017
Gaussian processes for classification: Mean-field algorithms
M Opper, O Winther
Neural computation 12 (11), 2655-2684, 2000
3302000
BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis
FO Bagger, D Sasivarevic, SH Sohi, LG Laursen, S Pundhir, CK Sønderby, ...
Nucleic acids research 44 (D1), D917-D924, 2016
3242016
DeepLoc 2.0: multi-label subcellular localization prediction using protein language models
V Thumuluri, JJ Almagro Armenteros, AR Johansen, H Nielsen, O Winther
Nucleic acids research 50 (W1), W228-W234, 2022
3122022
Expectation consistent approximate inference.
M Opper, O Winther, MJ Jordan
Journal of Machine Learning Research 6 (12), 2005
2912005
Bayesian non-negative matrix factorization
MN Schmidt, O Winther, LK Hansen
Independent Component Analysis and Signal Separation: 8th International …, 2009
2872009
A Bayesian approach to on-line learning
M Opper, O Winther
On-line learning in neural networks, 363-378, 1999
2791999
The system can't perform the operation now. Try again later.
Articles 1–20