Attention u-net: Learning where to look for the pancreas. O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999, 2018 | 6717 | 2018 |
Attention gated networks: Learning to leverage salient regions in medical images J Schlemper, O Oktay, M Schaap, M Heinrich, B Kainz, B Glocker, ... Medical image analysis 53, 197-207, 2019 | 1638 | 2019 |
A deep cascade of convolutional neural networks for dynamic MR image reconstruction J Schlemper, J Caballero, JV Hajnal, AN Price, D Rueckert IEEE transactions on Medical Imaging 37 (2), 491-503, 2017 | 1352 | 2017 |
Convolutional recurrent neural networks for dynamic MR image reconstruction C Qin, J Schlemper, J Caballero, AN Price, JV Hajnal, D Rueckert IEEE transactions on medical imaging 38 (1), 280-290, 2018 | 649 | 2018 |
A deep cascade of convolutional neural networks for MR image reconstruction J Schlemper, J Caballero, JV Hajnal, A Price, D Rueckert Information Processing in Medical Imaging: 25th International Conference …, 2017 | 428 | 2017 |
Attention u-net: Learning where to look for the pancreas. arXiv O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999 10, 2018 | 407 | 2018 |
Attention u-net: learning where to look for the pancreas (2018) O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999, 1804 | 239 | 1804 |
Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach J Duan, G Bello, J Schlemper, W Bai, TJW Dawes, C Biffi, A de Marvao, ... IEEE transactions on medical imaging 38 (9), 2151-2164, 2019 | 218 | 2019 |
Joint learning of motion estimation and segmentation for cardiac MR image sequences C Qin, W Bai, J Schlemper, SE Petersen, SK Piechnik, S Neubauer, ... Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018 | 187 | 2018 |
Adversarial and perceptual refinement for compressed sensing MRI reconstruction M Seitzer, G Yang, J Schlemper, O Oktay, T Würfl, V Christlein, T Wong, ... Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018 | 134 | 2018 |
Attention-gated networks for improving ultrasound scan plane detection J Schlemper, O Oktay, L Chen, J Matthew, C Knight, B Kainz, B Glocker, ... arXiv preprint arXiv:1804.05338, 2018 | 125 | 2018 |
VS-Net: Variable splitting network for accelerated parallel MRI reconstruction J Duan, J Schlemper, C Qin, C Ouyang, W Bai, C Biffi, G Bello, B Statton, ... Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd …, 2019 | 104 | 2019 |
Deep learning techniques for magnetic resonance image reconstruction J Schlemper, SSM Salehi, M Sofka, P Kundu, Z Wang, C Lazarus, ... US Patent US2020/0034998 A1, 2020 | 93 | 2020 |
Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity‐weighted coil combination K Hammernik, J Schlemper, C Qin, J Duan, RM Summers, D Rueckert Magnetic Resonance in Medicine 86 (4), 1859-1872, 2021 | 90 | 2021 |
Unsupervised multi-modal style transfer for cardiac MR segmentation C Chen, C Ouyang, G Tarroni, J Schlemper, H Qiu, W Bai, D Rueckert Statistical Atlases and Computational Models of the Heart. Multi-Sequence …, 2020 | 81 | 2020 |
Stochastic deep compressive sensing for the reconstruction of diffusion tensor cardiac MRI J Schlemper, G Yang, P Ferreira, A Scott, LA McGill, Z Khalique, ... International conference on medical image computing and computer-assisted …, 2018 | 64 | 2018 |
Multi-coil magnetic resonance imaging using deep learning J Schlemper, SSM Salehi, M Sofka US Patent US 2020/0294287 A1, 2020 | 62 | 2020 |
Attention u-net: Learning where to look for the pancreas O Ozan, S Jo, F Loic, L Matthew, H Mattias, M Kazunari, M Kensaku, ... arXiv preprint arXiv:1804.03999, 2018 | 62 | 2018 |
DSFormer: A dual-domain self-supervised transformer for accelerated multi-contrast MRI reconstruction B Zhou, N Dey, J Schlemper, SSM Salehi, C Liu, JS Duncan, M Sofka Proceedings of the IEEE/CVF winter conference on applications of computer …, 2023 | 54 | 2023 |
Self ensembling techniques for generating magnetic resonance images from spatial frequency data J Schlemper, SSM Salehi, M Sofka US Patent US2020/0294229 A1, 2020 | 53 | 2020 |