Follow
Florimond Houssiau
Florimond Houssiau
Tune Insight
Verified email at turing.ac.uk - Homepage
Title
Cited by
Cited by
Year
Synthetic Data--what, why and how?
J Jordon, L Szpruch, F Houssiau, M Bottarelli, G Cherubin, C Maple, ...
arXiv preprint arXiv:2205.03257, 2022
1822022
When the signal is in the noise: The limits of dif x’s sticky noise
A Gadotti, F Houssiau, L Rocher, Y de Montjoye
arXiv preprint arXiv:1804.06752, 2018
42*2018
Tapas: a toolbox for adversarial privacy auditing of synthetic data
F Houssiau, J Jordon, SN Cohen, O Daniel, A Elliott, J Geddes, C Mole, ...
arXiv preprint arXiv:2211.06550, 2022
352022
Differentially private compressive k-means
V Schellekens, A Chatalic, F Houssiau, YA De Montjoye, L Jacques, ...
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
272019
Pool Inference Attacks on Local Differential Privacy: Quantifying the Privacy Guarantees of Apple's Count Mean Sketch in Practice
A Gadotti, F Houssiau, MSMS Annamalai, YA de Montjoye
31st USENIX Security Symposium (USENIX Security 22), 501-518, 2022
232022
Detrimental network effects in privacy: A graph-theoretic model for node-based intrusions
F Houssiau, P Sapieżyński, L Radaelli, E Shmueli, YA de Montjoye
Patterns 4 (1), 2023
21*2023
The risk of re-identification remains high even in country-scale location datasets
A Farzanehfar, F Houssiau, YA de Montjoye
Patterns 2 (3), 2021
212021
Compressive learning with privacy guarantees
A Chatalic, V Schellekens, F Houssiau, YA De Montjoye, L Jacques, ...
Information and Inference: A Journal of the IMA 11 (1), 251-305, 2022
172022
On the difficulty of achieving Differential Privacy in practice: user-level guarantees in aggregate location data
F Houssiau, L Rocher, YA de Montjoye
Nature communications 13 (1), 29, 2022
152022
Evaluating COVID-19 contact tracing apps? Here are 8 privacy questions we think you should ask
YA de Montjoye, F Houssiau, A Gadotti, F Guepin
Computational Privacy Group Blog, 2020
142020
Synthetic data–what, why and how?(2022)
J Jordon, L Szpruch, F Houssiau, M Bottarelli, G Cherubin, C Maple, ...
arXiv preprint arXiv:2205.03257, 0
12
QuerySnout: Automating the discovery of attribute inference attacks against query-based systems
AM Cretu, F Houssiau, A Cully, YA de Montjoye
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications …, 2022
102022
Blogpost: Can We Fight COVID-19 without Re-Sorting to Mass Surveillance
YA De Montjoye, F Houssiau
Computational Privacy Group, 2020
102020
Anonymization: The imperfect science of using data while preserving privacy
A Gadotti, L Rocher, F Houssiau, AM Creţu, YA de Montjoye
Science Advances 10 (29), eadn7053, 2024
62024
Synthetic Data–what, why and how?,. arXiv
J Jordon, L Szpruch, F Houssiau, M Bottarelli, G Cherubin, C Maple, ...
arXiv preprint arXiv:2205.03257, 2022
62022
A framework for auditable synthetic data generation
F Houssiau, SN Cohen, L Szpruch, O Daniel, MG Lawrence, R Mitra, ...
arXiv preprint arXiv:2211.11540, 2022
52022
Synthetic Data—What, why and how? arXiv 2022
J Jordon, L Szpruch, F Houssiau, M Bottarelli, G Cherubin, C Maple, ...
arXiv preprint arXiv:2205.03257, 2022
52022
Compressive k-means with differential privacy
V Schellekens, A Chatalic, F Houssiau, YA de Montjoye, L Jacques, ...
SPARS 2019-Signal Processing with Adaptive Sparse Structured Representations …, 2019
42019
Web Privacy: A Formal Adversarial Model for Query Obfuscation
F Houssiau, T Liénart, J Hendrickx, YA de Montjoye
IEEE Transactions on Information Forensics and Security 18, 2132-2143, 2023
12023
Transparent Decisions: Selective Information Disclosure To Generate Synthetic Data
C Gavidia-Calderon, S Harris, M Hauru, F Houssiau, C Maple, I Stenson, ...
Data Engineering, 51, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20