Protein 3D structure computed from evolutionary sequence variation DS Marks, LJ Colwell, R Sheridan, TA Hopf, A Pagnani, R Zecchina, ... PloS one 6 (12), e28766, 2011 | 1105 | 2011 |
Rethinking attention with performers K Choromanski, V Likhosherstov, D Dohan, X Song, A Gane, T Sarlos, ... arXiv preprint arXiv:2009.14794, 2020 | 666 | 2020 |
Three-dimensional structures of membrane proteins from genomic sequencing TA Hopf, LJ Colwell, R Sheridan, B Rost, C Sander, DS Marks Cell 149 (7), 1607-1621, 2012 | 548 | 2012 |
The interface of protein structure, protein biophysics, and molecular evolution DA Liberles, SA Teichmann, I Bahar, U Bastolla, J Bloom, ... Protein Science 21 (6), 769-785, 2012 | 197 | 2012 |
Inferring interaction partners from protein sequences AF Bitbol, RS Dwyer, LJ Colwell, NS Wingreen Proceedings of the National Academy of Sciences 113 (43), 12180-12185, 2016 | 116 | 2016 |
Comparative analysis of nanobody sequence and structure data LS Mitchell, LJ Colwell Proteins: Structure, Function, and Bioinformatics 86 (7), 697-706, 2018 | 115 | 2018 |
A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence LY Beh, LJ Colwell, NJ Francis Proceedings of the National Academy of Sciences 109 (18), E1063-E1071, 2012 | 110 | 2012 |
Computational approaches to therapeutic antibody design: established methods and emerging trends RA Norman, F Ambrosetti, AMJJ Bonvin, LJ Colwell, S Kelm, S Kumar, ... Briefings in bioinformatics 21 (5), 1549-1567, 2020 | 108 | 2020 |
Deep diversification of an AAV capsid protein by machine learning DH Bryant, A Bashir, S Sinai, NK Jain, PJ Ogden, PF Riley, GM Church, ... Nature Biotechnology 39 (6), 691-696, 2021 | 104 | 2021 |
Charge as a selection criterion for translocation through the nuclear pore complex LJ Colwell, MP Brenner, K Ribbeck PLoS computational biology 6 (4), e1000747, 2010 | 98 | 2010 |
The emergence of protein complexes: quaternary structure, dynamics and allostery T Perica, JA Marsh, FL Sousa, E Natan, LJ Colwell, SE Ahnert, ... Biochemical Society Transactions 40 (3), 475-491, 2012 | 89 | 2012 |
Model-based reinforcement learning for biological sequence design C Angermueller, D Dohan, D Belanger, R Deshpande, K Murphy, ... | 73 | 2020 |
Using deep learning to annotate the protein universe ML Bileschi, D Belanger, D Bryant, T Sanderson, B Carter, D Sculley, ... BioRxiv, 626507, 2019 | 69 | 2019 |
Protein sectors: statistical coupling analysis versus conservation T Teşileanu, LJ Colwell, S Leibler PLoS computational biology 11 (2), e1004091, 2015 | 68 | 2015 |
Evaluating attribution for graph neural networks B Sanchez-Lengeling, J Wei, B Lee, E Reif, P Wang, W Qian, ... Advances in neural information processing systems 33, 5898-5910, 2020 | 66 | 2020 |
Using attribution to decode binding mechanism in neural network models for chemistry K McCloskey, A Taly, F Monti, MP Brenner, LJ Colwell Proceedings of the National Academy of Sciences 116 (24), 11624-11629, 2019 | 66 | 2019 |
Analysis of nanobody paratopes reveals greater diversity than classical antibodies LS Mitchell, LJ Colwell Protein Engineering, Design and Selection 31 (7-8), 267-275, 2018 | 60 | 2018 |
Using deep learning to annotate the protein universe ML Bileschi, D Belanger, DH Bryant, T Sanderson, B Carter, D Sculley, ... Nature Biotechnology 40 (6), 932-937, 2022 | 56 | 2022 |
Statistical and machine learning approaches to predicting protein–ligand interactions LJ Colwell Current opinion in structural biology 49, 123-128, 2018 | 56 | 2018 |
Power law tails in phylogenetic systems C Qin, LJ Colwell Proceedings of the National Academy of Sciences 115 (4), 690-695, 2018 | 56 | 2018 |