Følg
Finn Lindgren
Finn Lindgren
Bekræftet mail på ed.ac.uk
Titel
Citeret af
Citeret af
År
The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015
S Bhatt, DJ Weiss, E Cameron, D Bisanzio, B Mappin, U Dalrymple, ...
Nature 526 (7572), 207-211, 2015
23142015
An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
F Lindgren, H Rue, J Lindström
Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2011
22292011
Bayesian spatial modelling with R-INLA
F Lindgren, H Rue
Journal of statistical software 63, 1-25, 2015
8402015
Bayesian computing with INLA: new features
TG Martins, D Simpson, F Lindgren, H Rue
Computational Statistics & Data Analysis 67, 68-83, 2013
5212013
Bayesian computing with INLA: a review
H Rue, A Riebler, SH Sørbye, JB Illian, DP Simpson, FK Lindgren
Annual Review of Statistics and Its Application 4, 395-421, 2017
4762017
Spatio-temporal modeling of particulate matter concentration through the SPDE approach
M Cameletti, F Lindgren, D Simpson, H Rue
AStA Advances in Statistical Analysis 97 (2), 109-131, 2013
3562013
A multiresolution Gaussian process model for the analysis of large spatial datasets
D Nychka, S Bandyopadhyay, D Hammerling, F Lindgren, S Sain
Journal of Computational and Graphical Statistics 24 (2), 579-599, 2015
3062015
A case study competition among methods for analyzing large spatial data
MJ Heaton, A Datta, AO Finley, R Furrer, J Guinness, R Guhaniyogi, ...
Journal of Agricultural, Biological and Environmental Statistics 24 (3), 398-425, 2019
2782019
Constructing priors that penalize the complexity of Gaussian random fields
GA Fuglstad, D Simpson, F Lindgren, H Rue
Journal of the American Statistical Association 114 (525), 445-452, 2019
2582019
Going off grid: Computationally efficient inference for log-Gaussian Cox processes
D Simpson, JB Illian, F Lindgren, SH Sørbye, H Rue
Biometrika 103 (1), 49-70, 2016
2192016
Advanced spatial modeling with stochastic partial differential equations using R and INLA
E Krainski, V Gómez-Rubio, H Bakka, A Lenzi, D Castro-Camilo, ...
Chapman and Hall/CRC, 2018
2062018
Spatial modeling with R‐INLA: A review
H Bakka, H Rue, GA Fuglstad, A Riebler, D Bolin, J Illian, E Krainski, ...
Wiley Interdisciplinary Reviews: Computational Statistics 10 (6), e1443, 2018
2062018
Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping
D Bolin, F Lindgren
The Annals of Applied Statistics, 523-550, 2011
1442011
Excursion and contour uncertainty regions for latent Gaussian models
D Bolin, F Lindgren
Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2015
1242015
Think continuous: Markovian Gaussian models in spatial statistics
D Simpson, F Lindgren, H Rue
Spatial Statistics 1, 16-29, 2012
1142012
In order to make spatial statistics computationally feasible, we need to forget about the covariance function
D Simpson, F Lindgren, H Rue
Environmetrics 23 (1), 65-74, 2012
1142012
Exploring a new class of non-stationary spatial Gaussian random fields with varying local anisotropy
GA Fuglstad, F Lindgren, D Simpson, H Rue
Statistica Sinica, 115-133, 2015
1062015
On the second‐order random walk model for irregular locations
F Lindgren, H Rue
Scandinavian journal of statistics 35 (4), 691-700, 2008
992008
Does non-stationary spatial data always require non-stationary random fields?
GA Fuglstad, D Simpson, F Lindgren, H Rue
Spatial Statistics 14, 505-531, 2015
972015
Spatial models with explanatory variables in the dependence structure
R Ingebrigtsen, F Lindgren, I Steinsland
Spatial Statistics 8, 20-38, 2014
972014
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20