3D Packing for Self-Supervised Monocular Depth Estimation V Guizilini, R Ambrus, S Pillai, A Raventos, A Gaidon Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 845 | 2020 |
Learning to fuse things and stuff J Li, A Raventos, A Bhargava, T Tagawa, A Gaidon arXiv preprint arXiv:1812.01192, 2018 | 126 | 2018 |
Real-Time Panoptic Segmentation from Dense Detections R Hou, J Li, A Bhargava, A Raventos, V Guizilini, C Fang, J Lynch, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 91 | 2020 |
Pretraining task diversity and the emergence of non-bayesian in-context learning for regression A Raventós, M Paul, F Chen, S Ganguli Advances in neural information processing systems 36, 14228-14246, 2023 | 80 | 2023 |
Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving Z Cao, E Bıyık, WZ Wang, A Raventos, A Gaidon, G Rosman, D Sadigh arXiv preprint arXiv:2007.00178, 2020 | 78 | 2020 |
SIXO: Smoothing Inference with Twisted Objectives D Lawson, A Raventós, A Warrington, S Linderman Advances in Neural Information Processing Systems 35, 38844-38858, 2022 | 14 | 2022 |
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning D Kunin, A Raventós, C Dominé, F Chen, D Klindt, A Saxe, S Ganguli Advances in Neural Information Processing Systems 37, 81157-81203, 2024 | 11 | 2024 |
The Effects of Pretraining Task Diversity on In-Context Learning of Ridge Regression A Raventós, M Paul, F Chen, S Ganguli ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation …, 2023 | 6 | 2023 |
Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning F Chen, A Raventos, N Cheng, S Ganguli, S Druckmann arXiv preprint arXiv:2502.07154, 2025 | | 2025 |