Spectral networks and locally connected networks on graphs J Bruna, W Zaremba, A Szlam, Y LeCun arXiv preprint arXiv:1312.6203, 2013 | 6284 | 2013 |
Geometric deep learning: going beyond euclidean data MM Bronstein, J Bruna, Y LeCun, A Szlam, P Vandergheynst IEEE Signal Processing Magazine 34 (4), 18-42, 2017 | 4006 | 2017 |
End-to-end memory networks S Sukhbaatar, A Szlam, J Weston, R Fergus Advances in neural information processing systems 28, 2015 | 3170 | 2015 |
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks E Denton, S Chintala, A Szlam, R Fergus Advances in neural information processing systems 28, 2015 | 3006 | 2015 |
Personalizing dialogue agents: I have a dog, do you have pets too S Zhang arXiv preprint arXiv:1801.07243, 2018 | 1558 | 2018 |
Learning multiagent communication with backpropagation S Sukhbaatar, A Szlam, R Fergus Advances in Neural Information Processing Systems, 2244-2252, 2016 | 1318 | 2016 |
Video (language) modeling: a baseline for generative models of natural videos MA Ranzato, A Szlam, J Bruna, M Mathieu, R Collobert, S Chopra arXiv preprint arXiv:1412.6604, 2014 | 533 | 2014 |
A randomized algorithm for principal component analysis V Rokhlin, A Szlam, M Tygert SIAM Journal on Matrix Analysis and Applications 31 (3), 1100-1124, 2010 | 502 | 2010 |
Optimizing the latent space of generative networks P Bojanowski, A Joulin, D Lopez-Paz, A Szlam arXiv preprint arXiv:1707.05776, 2017 | 495 | 2017 |
Incremental gradient on the grassmannian for online foreground and background separation in subsampled video J He, L Balzano, A Szlam 2012 IEEE Conference on Computer Vision and Pattern Recognition, 1568-1575, 2012 | 454 | 2012 |
Intrinsic motivation and automatic curricula via asymmetric self-play S Sukhbaatar, Z Lin, I Kostrikov, G Synnaeve, A Szlam, R Fergus arXiv preprint arXiv:1703.05407, 2017 | 429 | 2017 |
Simple baseline for visual question answering B Zhou, Y Tian, S Sukhbaatar, A Szlam, R Fergus arXiv preprint arXiv:1512.02167, 2015 | 416 | 2015 |
The second conversational intelligence challenge (convai2) E Dinan, V Logacheva, V Malykh, A Miller, K Shuster, J Urbanek, D Kiela, ... The NeurIPS'18 Competition: From Machine Learning to Intelligent …, 2020 | 377 | 2020 |
Tracking the world state with recurrent entity networks M Henaff, J Weston, A Szlam, A Bordes, Y LeCun arXiv preprint arXiv:1612.03969, 2016 | 291 | 2016 |
Dialogue natural language inference S Welleck, J Weston, A Szlam, K Cho arXiv preprint arXiv:1811.00671, 2018 | 280 | 2018 |
Blenderbot 3: a deployed conversational agent that continually learns to responsibly engage K Shuster, J Xu, M Komeili, D Ju, EM Smith, S Roller, M Ung, M Chen, ... arXiv preprint arXiv:2208.03188, 2022 | 246 | 2022 |
Hybrid linear modeling via local best-fit flats T Zhang, A Szlam, Y Wang, G Lerman International journal of computer vision 100, 217-240, 2012 | 243 | 2012 |
Modeling others using oneself in multi-agent reinforcement learning R Raileanu, E Denton, A Szlam, R Fergus International conference on machine learning, 4257-4266, 2018 | 234 | 2018 |
Beyond goldfish memory: Long-term open-domain conversation J Xu arXiv preprint arXiv:2107.07567, 2021 | 233 | 2021 |
Evaluating prerequisite qualities for learning end-to-end dialog systems J Dodge, A Gane, X Zhang, A Bordes, S Chopra, A Miller, A Szlam, ... arXiv preprint arXiv:1511.06931, 2015 | 227 | 2015 |